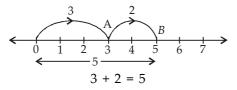
MATHEMATICS IN EVERYDAY LIFE-6

ANSWER KEYS

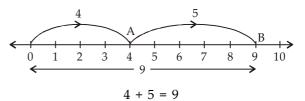
CORDO

Chapter 2 : Whole Numbers

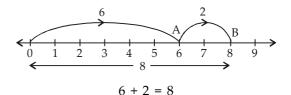

EXERCISE 2.1

- 1. To represent whole numbers on the number line.
 - (*i*) Draw a line and mark any point O on it.
 - (*ii*) Starting from point O, mark point A, B, C, D on the line at equal distance.

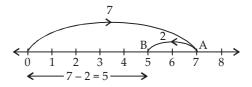
Let OA = 1 unit, AB = 1 unit, BC = 1 Unit and so on.

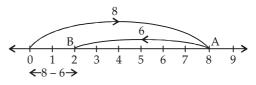

Thus, OA = 1 unit, OB = 2 units, OC = 3 units etc. Counting in the same manner we can represent whole numbers by points on the line drawn.

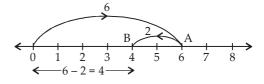
- (1) Predecessor of 1000 = 1000 . = 999
 - (*ii*) Predecessor of 70700 = 70700 1= 70699
- (*iii*) Predecessor of 905000 = 905000 1= 904999
- **4.** (*i*) We draw a number line and move 3 steps from 0 to the right and mark this point as A. Now starting from A move 2 steps towards right and arrive at B.

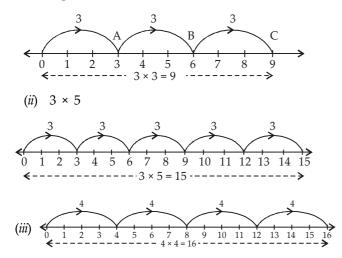


(*ii*) We draw a number line and move 4 steps from 0 to the right and mark this point as A. Now, starting from A move 5 steps towards right and mark as B.


Mathematics In Everyday Life-6


(*iii*) Draw a number line and move 6 steps towards right from 0 and again move 2 steps from 6.


5. (*i*) To represent 7 – 2 on number line. We draw a line starting from 0, we move 7 steps to the right and mark as A. Now, starting from point A, move 2 steps left to A and arrive at B. Then,


(*ii*) To represent 8 – 6 on number line. We draw a number line starting from 0, we move 8 steps to the right and mark point A. And from point A move 6 steps left to A and arrive at B.

(iii) To represent 6 – 2 on number line.

6. (i) To represent 3×3 on number line. We draw a number line, starting from 0 we move 3 steps to the right of 0 to arrive A. We make two more such moves starting from A (total 3 moves of 3 steps) to reach finally at point C which represents 9.

1. (*i*) Yes, the sum of two even numbers is an even number.

Example : 47942 + 67432 = 115374

(An even number)

(*ii*) No, the sum of two odd numbers is not an odd number.

Example : 97431 + 74717 = 172148

(An even number)

(i)
$$157 + 376 + 413 + 524$$

By suitable arrangement
 $= (157 + 413) + (376 + 524)$
 $= 570 + 900$
 $= 1470$
(ii) $23 + 446 + 377 + 54$
 $= (23 + 377) + (446 + 54)$
(By suitable arrangement)
 $= 400 + 500$
 $= 900$
(iii) $4001 + 3768 + 2999 + 1232$
 $= (4001 + 2999) + (3768 + 1232)$
(By suitable arrangement)
 $= 7000 + 5000$
 $= 12000$

3.

	$\stackrel{C_1}{\downarrow}$	$\stackrel{C_2}{\downarrow}$	$\stackrel{C_3}{\downarrow}$	$\stackrel{\rm C_4}{\downarrow}$	$\stackrel{\rm C_5}{\downarrow}$
$R_1 \rightarrow$	24	31	8	15	22
$R_2 \rightarrow$	30	12	14	21	23
$R_3 \rightarrow$	11	13	20	27	29
${\rm R_4} {\rightarrow}$	17	19	26	28	10
$R_5 \rightarrow$	18	25	32	9	16

Sum of diagonal numbers

= 24 + 12 + 20 + 28 + 16 = 100In Row $R_1 = 100 - (24 + 8 + 15 + 22) = 31$ In Column $C_1 = 100 - (24 + 11 + 17 + 18) = 30$ In Row $R_2 = 100 - (30 + 12 + 14 + 21) = 23$ In Row $R_3 = 100 - (11 + 13 + 20 + 27) = 29$ In Row $R_4 = 100 - (17 + 19 + 26 + 28) = 10$ In Column $C_2 = 100 - (31 + 12 + 13 + 19) = 25$ In Column $C_3 = 100 - (8 + 14 + 20 + 26) = 32$

4. (i) 325 + 4964

(l)	52.	J T	470	94							
			3	2	5			4	9	6	4
	+	4	9	6	4		+		3	2	5
	_	5	2	8	9			5	2	8	9
	He	ence	e, 3	25	+ 4	964 = 4964 + 3	325	= 5	5289)	
(ii)	352	29 -	+ 74	41							
		3	5	2	9				7	4	1
	+		7	4	1		+	3	5	2	9
		4	2	7	0			4	2	7	0
	He	ence	e, 3	529	+	741 = 741 + 35	529	= 4	270)	
(iii)		3 +									
		9	7	3				6	5	7	
	+	6	5	7			+	9	7	3	
	1	6	3	0			1	6	3	0	
	He	ence	e, 9	73 ·	+ 6	57 = 657 + 973	; =	163	80		
			, .	-	-				-		
34	+ 3	5 +	36	+ 3	7 -	- 65 + 63 + 64	+ (66			
							1 1				

- (By suitable arrangement) = (34 + 66) + (35 + 65) + (36 + 64) + (37 + 63)
- = 100 + 100 + 100 + 100
- = 400

5.

EXERCISE 2.3

1. (<i>i</i>)		3	9	9	9	Check:	1	3	2	1
	_	2	6	7	8	+	2	6	7	8
	_	1	3	2	1		3	9	9	9

Answer Keys

2.

(ii)	85659	Check:	46733
	- 3 8 9 2 6		- 3 8 9 2 6
	4 6 7 3 3		85659
(iii)	745652	Check:	$2\ 6\ 3\ 3\ 4\ 2$
	-482310		+ 4 8 2 3 1 0
	263342		745652

2. The greatest number of seven digits is 9999999. The difference of 9999999 and 84726251 will give us the required number.

	9	9	9	9	9	9	9
_	8	4	7	6	2	5	1
_	1	5	2	3	7	4	8

Hence, the required number is 1523748.

3. The largest number of four digits = 9999 The smallest number of six digits = 100000 Therefore, the difference between them

	1	0	0	0	0	0
_			9	9	9	9
		9	0	0	0	1

Hence the required difference is 90001.

4. (*i*) 7 6 7 5 7 4

Since, 9 + 0 = 9, the 10 thousands digit in Ist row.

	7	6	9	7	5	7	4
_		8	9		9	9	
		8	0	3		7	5

Since, unit digit is II row is 9 because 14 - 5 = 9

Since, 1574 – 999 = 575. Therefore,

The difference of 7574 and 3575 will gives the number in II row

Mathematics In Everyday Life-6

		_		57 99			
		_	3	95			
	7	6	9	7	5	7	4
_		8	9	3	9	9	9
		8	0	3	5	7	5

The difference of 7697574 and 893999

	7	6	9	7	5	7	4
_		8	9	3	9	9	9
	6	8	0	3	5	7	5

Hence,

	7	6	9	7	5	7	4
_		8	9	3	9	9	9
	6	8	0	3	5	7	5

The difference between 10106 and 6798

		1 () 1	0	6	
		- 6	57	9	8	
		3	33	0	8	
5	0	0	0	1	0	6
					9	
4	0	2	3	3	0	8

Since, the difference of 5000106 and 4023308 will gives the numbers of II row.

$\frac{-4\ 0\ 2\ 3\ 3\ 0\ 8}{9\ 7\ 6\ 7\ 9\ 8}$		5	0	0	0	1	0	6
976798	_	4	0	2	3	3	0	8
			9	7	6	7	9	8

Hence,

5	0	0	0	1	0	6
		7				
4	0	2	3	3	0	8

5. The given number = 543728. If the digit 4 and 7 of the given number are interchanged, then the new number = 573428.

Now, difference between both the numbers

573428 543728 29700

3

6. Total population of a town = 60,000 Number of males = 32457 Number of females = 13296 Total number of males and females = 32457 + 13296

$$3 2 4 5 7 + 1 3 2 9 6 \overline{4 5 7 5 3}$$

Hence, population of childrens = 60000 - 45753

Hence, population of children of a town is 14247.

7. The least number formed by the digits 0, 1, 3, 5, 7 = 10357.

The greatest number formed by the digits 0, 2, 4, 6, 8 = 86420

The difference of both the numbers.

Hence, the required number is 76063.

8. Deposited money = ₹3,75,000
 Withdrew of money = ₹49,265
 Balance = ₹3,25,735

Hence, ₹ 3,25,735 were left in Sahil's account.

EXERCISE 2.4

- **1.** (*i*) $4 \times 694 \times 125 \times 2$
 - $= (4 \times 125 \times 2) \times 694$
 - = 1000 × 694
 - = 694000

(*ii*) $5 \times 3996 \times 20 \times 2$

- $= (5 \times 20) \times (3996 \times 2)$
- = 100 × 7992
- = 799200

(*iii*) 2 × 9897 × 5

 $= (2 \times 5) \times 9897$

- $= 10 \times 9897$
- = 98970

(iv) $725 \times 8 \times 50 \times 20$

- $= (725 \times 8) \times (50 \times 20)$
- $= 5800 \times 1000$
- = 5800000

 $= 7909 \times (98 + 2)$ (Distributive law of multiplication over addition) $= 7909 \times 100$ = 790900(*ii*) $(43987 \times 45) + (43987 \times 55)$ $= 43987 \times (45 + 55)$ (Distributive law of multiplication over addition) $= 43987 \times 100$ = 4398700 (*iii*) $(1297 \times 38) + (1297 \times 62)$ $= 1297 \times (38 + 62)$ (Distributive law of multiplication over addition) = 1297 × 100 = 129700(iv) (7198 × 197) – (97 × 7198) $= 7198 \times (197 - 97)$ (Distributive law of multiplication over subtraction) $= 7198 \times 100$ = 719800 3. (i) $7909 \times 991 = 7909 \times (1000 - 9)$ $= (7909 \times 1000) - (7909 \times 9)$ (Distributive law of multiplication over subtraction) = 7909000 - 71181 = 7837819Hence, 7909 × 991 - 7837819 (*ii*) $4980 \times 507 = 4980 \times (500 + 7)$ $= (4980 \times 500) + (4980 \times 7)$ (Distributive law of multiplication over addition) = 2490000 + 34860= 2524860 Hence, 4980 × 507 = 2524860 (*iii*) 815 × 754 $= (800 + 10 + 5) \times 754$ $(800 \times 754) + (10 \times 754) + (5 \times 754)$ (Distributive law of multiplication over addition) = 603200 + 7540 + 3770 = 614510 Hence, 815 × 754 = 614510

2. (*i*) $(7909 \times 98) + (7909 \times 2)$

Answer Keys

(iv) 3023 × 612 = $(3000 + 20 + 3) \times 612$ $= 3000 \times 612 + 20 \times 612 + 3 \times 612$ (Distributive law of multiplication over addition) = 1836000 + 12240 + 1836= 1850076 Hence, 3023 × 612 = 1850076 (v) $356 \times 106 = 356 \times (100 + 6)$ $= (356 \times 100) + (356 \times 6)$ (Distributive law of multiplication over addition) = 35600 + 2136= 37736 Hence, 356 × 106 = 37736 4. The largest 3-digit number = 999 Sum of 2456 and 344 = 2456 + 344 = 2800 Now, product of 999 and 2800 = 2800 × 999 = 2800 + (1000 - 1) $= (2800 \times 1000) - (2800 \times 1)$ (Distributive law of multiplication over subtraction) = 2800000 - 2800= 2797200 Hence, the required products is 2797200. 5. In 1 day, number of toys to be made = 3265 \therefore In 25 days, number of toys will made = 3265×25 $= 3265 \times (20 + 5)$

 $=(3265 \times 20) + (3265 \times 5)$

(Distributive law of multiplication over addition)

- = 65300 + 16325
- = 81625

Hence, 81625 toys will made in a month of 25 working days.

6. The cost of 1 computer = ₹21346

∴ The cost of 125 computers = ₹ (21346 × 125)
 = ₹ {21346 × (100 + 20 + 5)}
 = ₹ {(21346 × 100) + (21346 × 20) + (21346 × 5)}
 (By distributive law of multiplication over addition)

- = ₹ (2134600 + 426920 + 106730)
- = ₹2668250

Hence, the cost of 125 computers is ₹26,68,250.

- 7. The cost of 1 chair = ₹375
 - ∴ The cost of 40 chairs = ₹ (375 × 40) And, the cost of 1 table = ₹ 125
 - \therefore The cost of 40 tables = \mathbf{E} (125 × 40)

Mathematics In Everyday Life-6

Total cost of 40 chairs and 40 tables = ₹ [(375 × 40) + (125 × 40)] = ₹ [(375 + 125) × 40] (Distributive law of multiplication over addition) =₹(500 × 40) = ₹20000 Hence, the total cost of 40 chairs and 40 tables is ₹20000. 8. Number of pages in 1 book = 150 \therefore Number of pages in 1652 books = 150 × 1652 $= (100 + 50) \times 1652$ $= (100 \times 1652) + (50 \times 1652)$ (By distributive law of multiplication over addition). = 165200 + 82600= 247800Hence, total number of pages in 1652 books is 247800. 9. Distance Covered in 1 hour = 68 km \therefore Distance covered in 99 hours = (68 × 99)km $= [68 \times (100 - 1)]$ km $= [(68 \times 100) - (68 \times 1)]$ km = 6800 - 68= 6732 km Hence, a truck will be a covered distance of 6732 km in 99 hours. 10. The greatest number formed by the digits

0, 1, 2, 3, 4, 5, 6 = 6543210

Product of 63538 and 35 = 63538 × 35

- $= 63538 \times (30 + 5)$
- $= (63538 \times 30) + (63538 \times 5)$
- (By distributive law multiplication over addition)
 - = 1906140 + 317690

= 2223830

Now, the difference of 6543210 and 2223830

	6	5	4	3	2	1	0
_	2	2	2	3	8	3	0
	4	3	1	9	3	8	0

Hence, the required difference is 4319380.

11. The product of units digits = 28 = 4 × 7, units digits are 4 and 7.

Now, product of tens digits = $15 = 3 \times 5$, tens digits are 3 and 5.

Two humbers are either 34 and 57 or a 37 and 54.

(i)
$$34 \times 57 = 34 \times (50 + 7)$$

 $= (34 \times 50) + (34 \times 7)$
(Distributive law of multiplication over addition)
 $= 1700 + 238$
 $= 1938$
(ii) $37 \times 54 = 37 \times (50 + 4)$
 $= (37 \times 50) + (37 \times 4)$
 $= 1850 + 148$
 $= 1998$
It is the given product.
Hence, the required digits are 37 and 54.

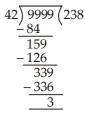
EXERCISE 2.5

1. (*i*) 92619 ÷ 123 123) 92619 (753 861 651 - 615 369 - 369 0 Check: 753 × 123 = 753 × (100 + 20 + 3) $= (753 \times 100) + (753 \times 20) + (753 \times 3)$ (Distributive law of multiplication over addition) = 75300 + 15060 + 2259 = 92619 (*ii*) $612846 \div 582$ 582)612846 (1053 <u>5</u>82 3084 2910 1746 1746 0 Check: 1053 × 582 $= (1000 \times 50 + 3) \times 582$ $= (1000 \times 582) + (50 \times 582) \times (3 \times 582)$ (By distributive law of multiplication over addition) = 582000 + 29100 + 1746= 612846 (iii) 75808 ÷ 103 103) 75808 (736 721 370 309 618 -618 0

Check:
$$736 \times 103 = 736 \times (100 + 3)$$

= $(736 \times 100) + (736 \times 3)$
= $73600 + 2208$
= 75808

(*iv*) 607920 ÷ 816


$$816 \underbrace{)607920(745)}_{-5712} \\ -5712 \\ 3672 \\ -3264 \\ 4080 \\ -4080 \\ 0 \\ \hline 0 \\ \end{array}$$

Check : $745 \times 816 = 745 \times (800 + 10 + 6)$ $= (745 \times 800) + (745 \times 10) + (745 \times 6)$ (By distributive law of multiplication over addition) = 596000 + 7450 + 4470= 607920 (v) 1245616 ÷ 2032 2032) 1245616 (613 12192 2641 -2032 6096 - 6096 0 Check: 613 × 2032 $= 613 \times (2000 + 30 + 2)$ $= (613 \times 2000) + (613 \times 30) \times (613 \times 2)$ (By distributive law of multiplication over addition) $= 1226000 + 18390 \times 1226$ = 1245616 (vi) $30400 \div 64$ 64) 30400 (475 256 480 448 320 - 320 0 Check: 475 × 64 $= 475 \times (60 + 4)$ $= (475 \times 60) + (475 \times 4)$ = 28500 + 1900= 304002. The greatest 7-digits number = 9999999 The greatest 3-digit number = 999

The greatest 7-digit number which divisible by 3-digit greatest number = 9999999 – 9

Hence, required number is 9999990.

3. The greatest 4-digit number = 9999

The greatest 4-digit number that is exactly divisible by 42 = 9999 - 3

= 9996

Hence, the required number is 9996.

- 4. An aeroplane covers a distance of 452 km in 1 hr.
 - \therefore Aeroplane covers a distance of 1 km in $\frac{1}{452}$ hrs.
 - :. Aeroplane covers a distance of 3978052 km in

$$\frac{3978052}{452}$$
 hrs.

$$\begin{array}{r}
452 \overline{)} 3978052 (8801) \\
- 3616 \\
- 3616 \\
- 3616 \\
452 \\
- 452 \\
0 \\
\end{array}$$

Hence, 8801 hours will it take to cover a distance of 3978052 km.

- **5.** \therefore 246 apples can be packed in 1 carton.
 - $\therefore 2755200 \text{ apples will be packed in } \frac{2755200}{246}$

$$246) 2755200 (11200) - 246 ($$

Hence, 11200 cartons will be required to packed all the apples.

Mathematics in Everyday Life-6

$$30 \div 5 = 30 \div (3 + 2)$$

= (30 ÷ 3) + (30 ÷ 2)
= 10 + 15
= 25

Thus,

 $30 \div 5 = 30 \div (3 + 2) \neq (30 \div 3) + (30 \div 2)$

Hence, "Division does not distribute over addition".

7. The required number (dividend)

= quotient × divisor + remainder

- $= 26 \times 32 + 4$
- = 832 + 4
- = 836

Hence, the required number is 836.

8. The required number (dividend)

Hence, the required number is 2230.

9. If we divide 56088 by 123, then quotient will be the required number. Then

$$\begin{array}{r}123 \overline{\smash{\big)}56088}(456 \\ -492 \\ -688 \\ -615 \\ 738 \\ -738 \\ -738 \\ 0 \end{array}$$

Hence, the required other number is 456.

10. Dividend = 62345 divisor = 199 Remainder = 58 We know that Dividend = Divisor × Quotient + Remainder substituting the values, we get 62345 =Quotient × 199 + 58 \Rightarrow Quotient × 199 = 62345 - 58 = 62287 \Rightarrow Quotient = $\frac{62287}{199}$

$$\begin{array}{r} 199 \overline{\smash{\big)}62287}(313) \\ -597 \\ -597 \\ -258 \\ -199 \\ -597 \\ -597 \\ -597 \\ 0 \end{array}$$

Hence, required quotient is 313.

11. Dividend = 34567

Divisor = 92

Remainder = 67

We know that,

Dividend = Divisor × Quotient + Remainder Substituting the values, weget

$$567 =$$
Quotient × 92 + 67

$$\Rightarrow \qquad \text{Quotient} \times 92 = 34567 - 67 \\ = 34500$$

34

 $\Rightarrow \qquad \text{Quotient} = \frac{34500}{92}$ 92)34500(375) $-\frac{276}{690}$

$$-\frac{644}{460}$$

 $-\frac{460}{0}$

Hence, the required quotient is 375.

EXERCISE 2.6

1.

$$1 \times 1 = 1$$

$$11 \times 11 = 121$$

$$111 \times 111 = 12321$$

$$1111 \times 1111 = 1234321$$
 (By observing the

$$11111 \times 11111 = 123454321$$
 given pattern)
2. (7 × 2) - 3 = 11
(7 × 3) - 6 = 15
(7 × 4) - 9 = 19
(7 × 5) - 12 = 23
By observing the given pattern, we have
(7 × 6) - 15 = 27
(7 × 7) - 18 = 31
(7 × 8) - 21 = 35
(7 × 9) - 24 = 39

 $8 \times 1 + 1 = 9$ $8 \times 3 + 1 = 25$ $8 \times 6 + 1 = 49$ $8 \times 10 + 1 = 81$ By observing the given pattern, we have $8 \times 15 + 1 = 121$ $8 \times 21 + 1 = 169$ $8 \times 28 + 1 = 225$ $1 \times 8 + 1 = 9$ $12 \times 8 + 2 = 98$ $123 \times 8 + 3 = 987$ By observing the given pattern, we have $1234 \times 8 + 4 = 9876$ $12345 \times 8 + 5 = 98765$ $123456 \times 8 + 6 = 987654$

MULTIPLE CHOICE QUESTION

1. Option (*b*) is correct.

3.

4.

- *"*The smallest whole number is 0."**2.** Option (*a*) is correct.*"*The whole number which is not a natural number is 0."
- Option (c) is correct.
 "since, 6 ÷ 0 is not defined."
- 4. Option (c) is correct."Multiplicative identity for whole numbers is 1."
- 5. Option (b) is correct."9 whole numbers are smaller then 9."
- 6. Option (*c*) is correct."Division is the inverse of multiplication."
- 7. The whole number p such that $p \div p = p$ is 1. Hence, option (*b*) is correct.
- 8. Option (c) is correct."2 ÷ 7 does not gives a whole number."
- 9. Option (*c*) is correct.
 "The relation *a* × *b* = *b* × *a* is hold commutative law."
- 10. The given number = 795Number obtain by reversing digits = 597Then, difference between them

Hence, Option (*a*) is correct.

11. The successor of the number 4578199 = 4578199 + 1 = 4578200

Hence, option (*b*) is correct.

- **12.** Option (*d*) is correct.
- **13.** The predecessor of 99840 = 99840 1 = 99839

Hence, option (*c*) is correct.

MENTAL MATH CORNER

- A. Fill in the blanks :
- 1. The whole number which is not used as a divisor is $\underline{0}$.
- 9 × (7 × 8) = (9 × 7) × 8 shows that multiplication of whole numbers is <u>associative.</u>
- 3. On the number line 29 lies on <u>left</u> side of 30.
- 4. 9999 = 9999 + 0.
- 5. $198 \times 0 = 0$.
- 6. 7283 0 = 7283
- 7. $869 (543 \div 543) = \underline{868}$. $\therefore 869 - (543 \div 543) = 869 - 1$ = 868
- 8. $27 \times 9 = 27 \times 10 27 \times 1$. $\therefore 27 \times 9 = 27 \times (10 - 1)$ $= (27 \times 10) - (27 \times 1)$

(By distributive law of multiplication over addition)

- **9.** The greatest 4-digit number of different digits is <u>9876</u>.
- 10. The smallest 4-digit number of different digit is 1023.
- 11. (998 × 8) + (998 × 2) = <u>9980</u>.
 ∴ (998 × 8) + (998 × 2) = 998 × (8 + 2)
 (By distributive law of multiplication over addition)

(False)

- **12.** $(605 \times 109) (605 \times 9) = \underline{60500}$. $\therefore \quad (605 \times 109) - (605 \times 9) = 605 \times (109 - 9)$ $= 605 \times 100$ = 60500.
- **B.** 1. All whole numbers are natural numbers.
- (False)2. Product of any two even numbers is always an even number. (True)
- 3. The successor of the greatest 2-digit number is the smallest 3-digit number. (True)
- The predecessor of two-digit number is never a single digit number. (False)

5.
$$69 \div 0 = 0 \div 69$$
.

Mathematics In Everyday Life-6

- 6. A number which is to be divided is called the dividend. (True)
- 7. If *a*, *b*, *c* are whole numbers, $(b \neq 0, c \neq 0)$ and $a \div b = c$, then $b \times c = a$. (True)
- 8. Every square number is also a rectangular number. (True)
- The product of two odd number is always an odd number. (True)
- The successor of a whole number is always one more than the whole number. (True)

REVIEW EXERCISE

Divisor = 53 1. Quotient = 12 Remainder = 4 We know that, Dividend = Ouotient × Divisor + Remainder Substituting the values, we have Dividend = $12 \times 53 + 4$ $= \{(10 + 2)\} \times 53 + 4$ $= \{(10 \times 53) + (2 \times 53)\} + 4$ (By distributive law of multiplication over addition) = (530 + 106) + 4= 640Hence, the required number is 640. **2.** (*i*) 62920 ÷ 34 34) 6290 (185 34 289 272

Check: $185 \times 34 = 185 \times (30 + 4)$

 $\overline{170} - 170$

- $= (185 \times 30) + (185 \times 4)$ = 5550 + 740
 - = 6290

(*ii*) 71400 ÷ 136

 $\begin{array}{r} 136 \overline{\smash{\big)}} \overline{71400}(525) \\ - \underline{680} \\ 340 \\ - \underline{272} \\ 380 \\ - \underline{380} \\ 0 \\ \hline 0 \\ \end{array}$ Check: $525 \times 136 = 525 \times (100 + 36) \\ = (525 \times 100) + (525 \times 36) \\ = 52500 + 18900 \\ = 71400 \\ \end{array}$

$$\begin{array}{cccc} C_1 & C_2 & C_3 \\ \downarrow & \downarrow^2 & \downarrow^3 \end{array}$$

$$R_1 \rightarrow \begin{array}{cccc} \mathbf{17} & \mathbf{10} & \mathbf{15} \\ R_2 \rightarrow \end{array}$$

$$R_2 \rightarrow \begin{array}{cccc} \mathbf{12} & \mathbf{14} & \mathbf{16} \\ R_3 \rightarrow & \mathbf{13} & \mathbf{18} & \mathbf{11} \end{array}$$

Sum of the number of the diagonal

= 15 + 14 + 13 = 42

Therefore,

In Row 1 (R_1) = 42 - (10 + 15) = 42 - 25 = 17 In Column 1 (C_1) = 42 - (17 + 13) = 42 - 30 = 12 In Row 2 (R_2) = 42 - (12 + 14) = 42 - 26 = 16 In Column 2 (C_2) = 42 - (10 + 14) = 42 - 24 = 18 In Column 3 (C_2) = 42 - (15 + 16) = 42 - 31 = 11

4. (*i*) 8, 0, 6, 3, 4

The greatest 5-digit number (repeatition not allowed) = 86430

The smallest 5-digit number = 30468

- (*ii*) 3, 0, 5, 7, 4
 The greatest 5-digit number = 75430
 The smallest 5-digit number = 30457
- 5. The greatest 4-digit number using four different digits, 5 occurs at tens place = 9857
 The smallest 4-digit number using four different digits, 5 occur at tens places = 1052
- 6. Each student paid maney = ₹410
 - ∴ 1425 student will paid money = ₹ (1425 × 410) = ₹ {1425 × (400 + 10)}

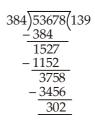
$$= \langle ((1+2) \times +00) + (1+2) \times \\ = \langle ((1+2) \times +00) + (1+2) \times \\ = \langle (1+2) \times +00 \rangle + (1+2) \rangle \rangle$$

- = ₹ {570000 + 14250}
- = ₹854250

Hence, ₹584250 was collected for the tour.

7. 35

 $\frac{-5}{30} \rightarrow \text{ first time}$ $\frac{-5}{25} \rightarrow \text{ second time}$ $\frac{-5}{20} \rightarrow \text{ third time}$ $\frac{-5}{15} \rightarrow \text{ fourth time}$ $\frac{-5}{10} \rightarrow \text{ fifth time}$


- \rightarrow sixth time - 5 \rightarrow seventh time 0 Hence, $35 \div 5 = 7$. 8. Largest 3-digit number = 999 sum of 4325 and 1015 = 4325 + 1015 = 5340Now, 5340 × 909 Product of 999 and 5350 $= 5340 \times (1000 - 1)$ $= (5340 \times 1000) - (5340 \times 1)$ (By distributive law of multiplication over subtraction) = 5340000 - 5340 = 5334660Hence, required product is 5334660. 9. (i) $7998 \times 56 + 7998 \times 35 + 9 \times 7998$ $= 7998 \times (56 + 35 + 9)$ (By distributive law of multiplication over addition) $= 7998 \times 100$ = 799800 (*ii*) 4997 × 68 + 4997 × 44 - 4997 × 12
 - = 4997 × (68 + 44 12)
 - $= 4997 \times (112 12)$
 - = 4997 × 100
 - = 499700
- **10.** If we divide 53163 by 99, then the quotient will be the required number.

Therefore,

99) <u>53163(</u> 537 - 495
-495
366
- 297
693
- 693
0

Hence, the required number is 537.

11. If we divide 53678 by 384, then the remainder will be the required least number.

Answer Keys

Hence, the required least number is 302.

12. The original number = 49635.If the digits 9 and 3 of the number interchanged. Then

The new number = 43695

The difference of original and new number

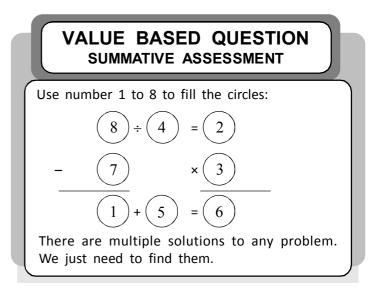
$$\begin{array}{r}
 4 9 6 3 5 \\
 - 4 3 6 9 5 \\
 \overline{5 9 4 0}
 \end{array}$$

Hence, required difference is 5940.

13. Ajeet = ₹9250 Upen = ₹12428 Rajiv = ₹24962 Total = ₹46640 Ravi had total mony = ₹52000 Balance money = ₹52000 - ₹46630 ₹52000 ₹46640

₹ 5360

HOTS QUESTIONS


1. $a \int b (q) \frac{-aq}{r}$ Where $0 \le r < a$

Then, b = aq + r

2. Yes, if n = 1,
1 ÷ 1 = 1
All whole numbers except 1.

- (*i*) $(4 \times 4 \div 4) 4 = 0$ (*ii*) $(4 + 4 - 4) \div 4 = 1$
- (*iii*) $4 \times 4 \div (4 + 4) = 2$
- $(iv) (4 + 4 + 4) \div 4 = 3$

